

MOTIVATION

Task: Semantic image inpainting (filling large missing regions)

- ill-posed task
- requires strong prior knowledge on the data
- extracting information from only a single image produces unsatisfactory results

Contributions:

- deep generative models produce missing content by conditioning on available data
- inpainting as constrained optimization problem using context and prior loss

INTRODUCTION

Problem Formulation:

- Corrupted image: **y**
- Binary mask: M
- Task: predict uncorrupted version $\hat{\mathbf{x}}$

Baselines:

- Total Variation and Low Rank assume smoothness in the pixel space
- Context Encoder is a deep model which treats inpainting as a regression problem

Instead of explicitly defining the prior, we utilize deep generative models to capture prior information.

Generative Adversarial Networks:

- Generator G: deep net mapping perturbation z to artificial sample
- Discriminator D: deep net discriminating between artificial and real sample, x
- Program:

$$\min_{G} \max_{D} V(G, D) = \mathbb{E}_{\mathbf{x} \sim p_{data}} [\log(D(\mathbf{x}))] + \mathbb{E}_{\mathbf{z} \sim p_{\mathbf{z}}(\mathbf{z})} [\log(D(\mathbf{x}))]$$

 $\hat{\mathbf{x}} =$

SEMANTIC IMAGE INPAINTING WITH DEEP GENERATIVE MODELS Chen Chen^{*} Teck Yian Lim Alexander G. Schwing Mark Hasegawa-Johnson Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign * indicating equal contribution.

Μ

 $1 - D(G(\mathbf{z}))$

OUR APPROACH

Intuition of our approach:

- Hypothesis: image that is not from p_{data} (e.g., corrupted data) should not lie on the learned encoding manifold; use manifold can be used as a prior
- Instead of working in the pixel space, we recover the encoding \hat{z} "closest" to the corrupted image while constrained to the manifold

Solving for the "closest" encoding \hat{z} :

 $\hat{\mathbf{z}} = \arg\min_{\mathbf{z}} \mathcal{L}_c(\mathbf{z}|\mathbf{y}, \mathbf{M}) + \mathcal{L}_p(\mathbf{z})$

Context Loss: importance weighted metric W to enforce similarity to the uncorrupted regions:

Prior Loss: prior penalizing unrealistic images based on the discriminator:

$$\mathcal{L}_c(\mathbf{z}|\mathbf{y}, \mathbf{M}) = \|\mathbf{W} \odot (G(\mathbf{z}) - \mathbf{y})\|_1$$

Illustration of the approach:

$$\mathcal{L}_p(\mathbf{z}) = \lambda \log(1 - D(G(\mathbf{z})))$$

$$\mathbf{x}_i = \mathbf{y}_i$$
 for $\mathbf{M}_i = 1$

RESULTS

Comparison: Poisson Blending vs. Overlay:

Overlay

Quantitative Results:

- Higher PSNR does not mean better visual quality
- The solution is not unique, many hallucinations are reasonable

Qualitative Results:

CE Input

The PSNR values (dB) on the test sets. Left/right results are by Context Encoder (CE)/ours:

•			
sks/Dataset	CelebA	SVHN	Cars
Center	21.3 /19.4	22.3 /19.0	14.1 /13.5
pattern	19.2 /17.4	22.3 /19.8	14.0/ 14.1
random	20.6/ 22.8	24.1/ 33.0	16.1/ 18.9
half	15.5 /13.7	19.1 /14.6	12.6 /11.1

• In the figure above, PSNR for CE is 24.71 dB and ours is 22.98 dB